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Abstract: The main aims of this paper are to 1) predict  the uncertainties using the hybrid method of WT-

ANN-ICA and 2) determine the optimal  generation strategy of a micro-grid (MG) containing wind farms 

(WFs), photovoltaic (PV), fuel cell (FC), combined heat and power(CHP) units, tidal steam turbine (TST), and 

also boiler and energy storage devices (ESDs). 

The scenario-based stochastic optimization problem is presented to determine the optimal points for the energy 

resources generation and to maximize the expected profit considering demand response (DR) programs and 

uncertainties. The uncertainties include wind speed, tidal steam speed, photovoltaic power generation (PVPG), 

market price, power and thermal load demand. For modeling uncertainties, an effort has been made to predict 

uncertainties using the hybrid method of wavelet transform (WT) in order to reduce fluctuations in the input 

historical data. An improved artificial neural network (ANN) based on the nonlinear structure is also used for 

better training and learning. Furthermore, the imperialist competitive algorithm (ICA) is adopted to find the 

best weights and biases for minimizing the mean square error of predictions. In the present study, three cases 

are investigated to confirm the performance of the proposed method. The first case study is programing MG 

isolated from grid, the second and the third case studies respectively are pertaining to comparison of the 

prediction of uncertainties using WT-ANN-ICA and WT-ANN methods, and effect of DR programs on the 

expected profit of energy resources in grid-connected mode. 
 

Keywords: micro-grid, wind farm, photovoltaic, combined heat and power, tidal steam turbine, expected     

profit. 
 

Nomenclature 

i : Index of each energy resources, W , CHP , PV , FC , 

TST , K , B  : Index of wind farm, combined heat and 

power, photovoltaic, fuel cell, tidal steam turbine, 

electrical energy storage device and boiler, 

WA ,
TSTA ,

PVA ,
CHPCHP FA  ,

FCA ,
FCB : Cost coefficients of 

wind farm, tidal steam turbine, photovoltaic, combined 

heat and power, and fuel cell, T / t : Total number / 

index of time intervals, 
ps ,

TSSs ,
Ws ,

PVs ,
PLs ,

HLs : Index 

of scenarios for market price, tidal steam speed, wind 

speed, photo-voltaic power generation, power and 

thermal load demand respectively,  ,  ,  ,  :Four 

marginal points of the electrical-thermal characteristic 

of combined heat and power, Y : Sufficient large 

number, ),( tiUCOST
, ),( tiDCOST

: Startup/shutdown cost of 

thi   generation unit at hour t , ),( tiM : Commitment 

state of thi   generation unit at hour t , 
s : Probability 

of the thsW   wind speed, thsTSS   tidal steam speed, 

thsPV   photo-voltaic generation, thsp   scenario of 

market price, thsPL   scenario of power load demand, 

thsHL   scenario of thermal load demand, ),( tiCT
: Value 

of total generation cost of thi   generation unit at hour 

t , ),( tsE pP
: Price of the market ($/MW) for energy for 

ths p   scenario of price at hour t , respectively, 

),( tsPsale
, ),( tsPbuy

: Amount of power sold and bought 

to/from the market at hour t  in MW, 

),( tsP W

W

G
, ),( tsP TSS

TST

G
, )(, tP CHPG

  , )(tP FC

G
 : Power generation 

of wind farm, tidal steam turbine, heat and power and 

fuel cell at hour t  in MW, respectively, ),(0 tsL / ),( tsL : 

Load before/after applying demand response 

program, ),( tsDR : Percentage of load shifting  from 

hour t , 
maxDR :Maximum load which can be shifted, 

),( tsLshift
 : Shifted load from other hours to hour t  

for ths  scenario, ),( tsincreasrd : Amount of increased 

load at hour t , 
max : Maximum amount of load which 

can be increased at hour t , )(tH  : Total produced heat in 

combined heat and power and boiler at hour t , )(tH : 

Real heat which the buffer tank could be supplied at 

hour t , AH(t)  : Available heat in the buffer tank, 

 :Heat loss rate for heat buffer tank, ),(/),( tiSDtiSU : 

Startup/Shutdown status of thi   unit at hour t , 

),( tPVZCH
/ ),( tPVZDCH

: Charge/Discharge state of energy 

saving device of photo-voltaic unit at hour t , 
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COST
BATT : The cost of buying energy for battery 

charging, ),( tKPCH

BATT
, )(max KP CH

BATT
: The amount of 

charging power of thk  electrical energy storage 

device at hour t  and its maximum limit, ),( tKPDCH

BATT
, 

)(max KP DCH

BATT
: The amount of power delivered while 

discharging  electrical energy storage device at hour t  

and its maximum limit, ),(ENR tK : The amount of 

saved energy in thk   electrical energy storage device at 

hour t ,  : Efficiency factor of  electrical energy 

storage device, ),( tFCton
/ ),( tFCtoff

: Duration for which 

fuel cell had been continuously up/down till 

period t ,
minU  /

minD : Minimum up/down time of fuel cell, 

),( tFCRup / ),( tFCRdown :Ramp up/down capacity of fuel 

cell at hour t , upRmax
/ downRmax

: Maximum ramp up/down rate 

of fuel cell, 
inŷ /

iny : Predicted/ Real value for thin   

input, ),,( tWsWS W
: The amounts of wind speed of 

thW   wind farm for thsW   wind speed scenario at 

time t , )(WPWN : Rated power of thW   wind farm, 

)(WWSci : The minimum wind speed required to start 

power efficiency in wind farm(cut-in speed), )(WWSn
: 

Rated speed, )(WWSco
: The cut-out wind speed (the 

wind speed by which turbine puts the blades parallel to 

wind to prevent damages) , ),,( tTSTsTSS TST
: The 

amounts of steam speed of thTST   tidal steam turbine 

for thsTST   steam speed scenario at time t , 

)(TSTP N

TST
: Rated power of thTST   tidal steam turbine, 

)(TSTTSSci
: The cut-in steam speed, )(TSTTSSn

: Rated  

steam speed, )(TSTTSSco
: The cut-out speed of tidal 

steam turbine, water :The fluid density ( 2m
kg

), A :  

The cross-sectional area of the tidal  steam turbine   

(
2m ), PC :The power coefficient. 

 

1. Introduction 
In the price based unit commitment (PBUC), the 

main target of programming would be both profit 

maximization and generation optimization. The profit is 

defined as the difference of revenue and cost. 

Practically, the gross profit depends not only on revenue 

but also on the total expenditures [1].  

Owners of renewable resources need to predict the 

uncertainties for optimal planning such as photovoltaic 

voltage/power generation [2], market price [3], and load 

forecasting [4], wind farm power generation/wind speed 

(WS) [5-9]. In [7], firstly, historical data of WF is 

decomposed using WT and then WF power generation 

is predicted by ANN. This method is tested in two 

regions of china. Afterwards, comparing WT-ANN, 

ANN, and ARMA methods revealed that WT-ANN can 

significantly reduce the error in spite of ANN and 

ARMA methods. In [8], the optimal weights and biases 

of ANN are determined by genetic algorithm (GA), ICA, 

and ICA-GA methods; then they are tested on six 

specified data-bases. In the end, the obtained results 

confirmed that ICA has higher capabilities. Similarly, 

ANN is employed to predict WF power generation and 

then ICA, GA, and PSO are chosen to determine the 

optimal weights and biases [9]. The prediction results 

were more satisfactory when ICA algorithm was 

utilized. 

The second solution for uncertainty reduction in 

renewable units including renewable resources is to 

coordinate other energy resources which are quite 

expensive, but available and more reliable, such as 

pump-storage unit, hydro unit, gas turbines, combined 

cycle power plants, and energy storage batteries [10 -

21]. However, the share of these energy sources should 

diminish for many reasons [10]. In [11] the coordinated 

planning of WF, pump-storage unit, and thermal units is 

presented by the multi-stage stochastic planning and 

solved by scenario decreasing algorithm of PSO. In [12], 

the required reserve level is estimated in presence of 

high-level WF penetration. In [13], the optimal strategy 

of WF is determined in the real-time market. The wind 

speed and market price are predicted by ARMA. 

Moreover, the expected profit is limited by FR and the 

required reserve is determined due to the error 

prediction in WF power generation. In [14], the 

coordinated planning problem of WF and thermal 

power plants are solved by artificial immune 

optimization method. This optimization method is 

implemented on a system including ten thermal power 

plants and two WFs. A mixed integer programing 

algorithm is adopted for period planning of operation 

startup/shutdown and generating/pumping mode of 

pump-storage unit to maximize the profit in coordinated 

operation of WF and pump-storage unit [15]. A 

scenario-based and chance constrained optimization 

method is hired to consider the WF power generation 

prediction error. A rolling optimization method for WF 

coordination with the energy-storage systems in the 

day-ahead market is presented to increase the profit of 

these power plants.  

The optimal scenario-based operation management of 

MG including WF, photovoltaic, micro-turbine/fuel cell, 

and energy storage devices are studied in [16]. In this 

paper, the considered uncertainties are load, WF power 

generation, photovoltaic power generation, and market 

price. In [17], the optimal biding strategy model in an 

electricity distributed company is considered in order to 

make the maximum profit in the day-ahead market. In 
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[18], the modified particles swarm optimization 

algorithm is used to optimize energy in MG. Moreover, 

in this study, uncertainty of data is checked using Hong 

method. In [19] like [18], Hong method is applied for 

covering uncertainties; however, the modified firefly 

algorithm is utilized for optimization. In [20], studies 

on utilization of micro network are made in the 

presence of generating resources of thermal and 

electrical energy and also Proton Exchange Membrane 

Fuel cell power plant along with the hydrogen storage. 

The modified algorithm of self-adaptive charge search 

algorithm is applied for optimization. In [21], the 

objective function is considered to maximize the profit 

of wind farm, fuel cell, boiler, CHP units, electrical 

power generation unit and ESDs connecting to a MG 

regarding uncertainties. The uncertainties are predicted 

by time series methods.  

 In this paper, the presented issue can be shortly 

explained as follows: 

1-  Prediction of uncertainties via hybrid method 

(HM) of WT-ANN-ICA. According to the studies in [7-

9], prediction of uncertainties using the proposed 

method can lessen errors of prediction in comparison to 

ARMA, ANN, WT-ANN, WT-ANN-PSO, and WT-

ANN-GA methods. Therefore, this approach may 

generate scenarios closer to reality and lead to the 

optimal programming. 

2-  Generating the scenarios of WS, tidal steam 

speed(TSS), PVPG, market price, power/thermal load 

demand and decreasing the scenarios with the scenario-

reduction backward method, and modeling them 

through the tree scenario method. 

3-  The programming of MG including WFs, PV, TST, 

FC, CHP units, boiler and electrical and thermal ESDs, 

considering constraints and the uncertainties of WS, 

TSS, PVG, market price and power/thermal load 

demand. 

4-  Studying the expected profit of energy resources 

with and without DR program.  

  

2. The Proposed Method 
An algorithm is proposed for programming generation 

and unit commitment of an MG including three WFs, 

PV, TST, FC, two CHP units, boiler and ESDs with 

and without considering DR program shown in Fig. 

(1). 

 

2.1. Scenario-based stochastic modeling 

As a result of extending renewable resources and 

uncertainty in the nature of such resources, the 

modern complicated power systems should be 

analyzed in uncertain forms so that operating point 

and reliability of energy supply occur approximately 

to the optimal point in reality. Therefore, having 

access to powerful tools is necessary for transition 

from uncertain environments with random variables, 

including their probability contributions, to the certain 

problems with certain variables. In the modern 

deregulated markets, the most important random 

variables are load demands, wind speed, PVPG, and 

market price. The origin of the above mentioned 

uncertainties can be found in issues such as weather 

conditions, temperature variations as well as 

government and sport planning. 

The proposed method for prediction of uncertainties is 

depicted in Fig. (1). First, it is assumed that the 

prediction for d-th day can be done and historical data 

are available for every single hour of 24 hours since 

100 days ago. 

Stage 1: data homogenization: the historical data are 

recalled and normalized to improve data 

homogenization. 

Stage 2: Data Processing Using Wavelet Theory: the 

components and features of data can be extracted via 

mathematical equations. More specifically, the 

components and features of time and frequency 

domain of data signal can be extracted using wavelet 

technique. The basic equations of WT are as Eq. (1), 

(2).  
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Where, ψ (a, b) is wavelet function and f (t) is input 

signal on which wavelet function is done until 

resulting the WT (a, b) signal. Furthermore, a and b 

are the parameters related to the WT which depend on 

the type of wavelet function. The approximated values 

are again decomposed after some iterations; therefore, 

the signal is decomposed into smaller parts [7, 22]. 

WT is useful here to suppress the disturbances in 

historical data and to alleviate the fluctuation of input 

data. The input data is decomposed into three 

approximated components (Dh1, Dh2, and Dh3) with 

lower accuracy along with a more precise component 

(Ah) which plays the most important role in the 

prediction process [22]. Stage 3: Artificial Neural 

Network (ANN): McCulloch and Pitts tried to 

simulate the ANN by a logical model for the first time 

but today it is widely used in many fields. In this 

paper, the chosen ANN comprises three perception 

layers; the output layer with one neuron, the input 

layer with five neurons, and the hidden layer with 

three neurons. This ANN can predict the information 

of hours d (t+1,……t + 24) for the output signals of 

WT as the initial data. 
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Fig. (1): The flowchart of the proposed method 

 

Stage 4: Imperialist Competitive Algorithm (ICA): 

ICA is a new optimization strategy based on political 

and social evolution of human. Basically, to determine 

the best solution, GA and PSO are inspired with 

biological evolutions, chromosomes and particles. 

However, the source of inspiration in ICA is the 

social-political evolution, and it uses colonies 

(countries) as the variable for finding the optimal 

solution [8, 9]. The steps of ICA can be summarized 

as follow: 

 1-Creating the initial colonies: according to the 

neural network input signals (Ah,Dh1,Dh2, and Dh3), 

and the five neurons in the input layer (IL), three 

neurons in hidden layer (HL), and one neuron in 

output layer(OL), the matrixes of wrights (W) and 

biases (B) which are respectively ILW=[5×4], 

ILB=[5×1], HLW=[5×3], HLB=[3×1]  ،OLW=[3×1], 

and OLB=[1×1]. Hence, each colony constitutes 47 

variables. Initial colonies are selected randomly 

through specific range based on initial training of 

ANN. Afterwards, regarding the cost function based 

on decreasing the prediction error, the optimization of 

weights and biases are performed within the neural 

network for better training. The cost function here is 

mean square error which is implied as Eq. (3). 
2

1

ˆ
1

min 



IN

in

inin yy
IN

MSEstFunctionCo           (3) 

2- Selecting the imperialist: in this stage the colonies 

with minimum cost are selected as the imperialists. 

3- Allocating the other countries as the colony to the 

imperialists: in this step, some colonies are allocated 

to each of imperialists and empires. This allocation is 

done according to imperialists fitness (fewer cost) by 

stochastic universal sampling method. The stages of 

1-3 are the initialization stages of ICA. 

4- Performing the act of assimilation or absorption 

policy: in this stage, each of the colonies is moved 

towards the imperialist in each empire. This stage 

proceeds to improve the exploitation of algorithm.  

5- Performing the act of revolution: In this stage, the 

random changes are applied on each of the colonies. 

This action can improve the exploration of algorithm, 

and prevent from involving the optimization in the 

local optimal points. 

6- Computing the cost of colonies and imperialists. 

7- Comparing the cost of colonies with imperialist in 

each empire: if a colony holds a lower cost than the 

imperialist, it will take its place. 

8- Evaluating the empires: the cost for each empire is 

computed according to Eq. (4). 

)(
1.0

1

n

N

nCOL

timperialisempire Cost
N

CostCost
COL






            (4)                                                                                                            

where, NCLO is the number of colonies. 

9- Decreasing the colonies: in this stage, a colony is 

omitted from the weakest empire and transmitted to 

another empire by roulette wheel method. According 

this method, the empire with the lower cost has more 

chance to seize the colony. 

10- Omitting the empire: if the weakest empire has no 

colony, the related imperialist will be transmitted to 

another empire as a colony. 

Stage 5: Studying the termination condition: the stop 

condition is set based on the number of iterations 

obtained by trial and error method. If the stop 

condition of program is satisfactory, the results are 

moved to the scenario generation stage; otherwise, the 

algorithm returns to (4) to generate new colonies. ICA 

flowchart is illustrated in Fig. (2). The uncertainty 

prediction curves are shown in Fig. (3, a-f). 
 

2.1.1. Generating scenarios and backward method 

scenarios reduction 

According to the stated issues, the determination of 

optimal strategy for resources connected to the MG is 

analyzed randomly. To reach this goal, at first, a 

probability density function is defined for each variable. 

In this study, the applied probability density function is 

adopted for power/thermal load demand, TSS, PVPG, 

and market price with normal distributed functions. In 

the case of WS, the statistical model is not coordinated 

with normal distribution but more harmonized with 

Weibull distribution function. 

This distribution function is decomposed into N parts 
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with the mean of zero from the center with the width of 

α. It is allocated to the occurrence probability and 

specific error percentage for each level as shown in Fig. 

(4) [16]. The probability of each occurrence is 

normalized so that their accumulated distribution 

function is equal to 1. Then, a number is randomly 

selected for each uncertainty variable and each time 

interval by roulette wheel method; hence, an intended 

scenario is generated. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2): Flowchart of ICA 
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Fig. (3): The uncertainty prediction curves (a): Electrical 

demand, (b): Energy price, (c): PV power generation, (d): 

Thermal demand, (e): Wind speed, (f): Tidal steam speed. 
 

The rate of each scenario is obtained by sum of the 

error and predicted amount of variable [16]. Eq. (5) 

shows the amount of scenario for the WS. Consequently, 

500 scenarios are generated for each uncertainty. 

For modeling all uncertainty parameters including WS, 

TSS, PVG, market price and power/thermal load 

demand many scenarios are generated. However, the 

huge number of scenarios make it burdensome to solve 

the stochastic problem. In order to solve this problem, 

the number of scenarios should be declined by the 

backward method. The basis of this method is to merge 

the scenarios with close probability into one. This 

process could continue until reaching the favorable 
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numbers [16, 21]. In this research, the number of 

scenarios abates down to 01 for each state. 
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2.2. Objective function of WFs, PV, TST, FC, CHP 

units, boiler and ESDs  

In this study, the optimal scheduling of MG including 

WFs, PV, TST, FC, CHP units, boiler and ESDs is 

examined with the 24– hour time horizon as well as 

considering uncertainties and DR programs in order to 

maximize the expected profit. The multi-stage 

stochastic programing is applied to deal with 

uncertainties. Since the generation power of units 

should be determined before applying stochastic 

processes, they are the first stages or here-and-now 

decisions and are not dependent to the scenarios. 

Other variables such as buy or sell power from the 

market and charge or discharge of storage devices are 

at the second stage or wait-and-see decisions.    
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Fig. (4): The probability density function of 

uncertainties 

2.2.1 Problem modeling  

In this section, an optimal bidding strategy is modeled 

and analyzed. The objective function of this 

optimization problem utilized for the first time is as 

Eq. (6). The aim is to maximize the expected profit of 

units considering constraints related to unit usages. 

The revenue is earned from difference between selling 

excess energy to the market in grid-connected mode 

and costs. The costs including buying energy from the 

market in grid-connected mode, the expenditure of 

operation, startup and shutdown cost, the cost of 

charge of electrical ESD and batteries of PV resource 

are as Eq. (9)-(12). Eq. (15) is the power balancing 

constraint of MG.  
 

2.2.1.1 Demand response program constrains 

The aim of demand response programs is shifting the 

load of MG from high consumption hours (in which 

the energy prices are high) to the low consumption 

hours. It should be noted that planning for load 

shifting is just able to change a part or percentage of 

load from an hour to another. [21] 

The final load after applying DR program: (Eq. (16))  

The maximum amount of movable load: (Eq. (17)) 

Maximum limit of load in each of the intervals: (Eq. 

(18))  

Load in hour t after applying DR program: (Eq. (19)) 

Coefficient limit of increasing load: (Eq. (20))  

Since in day-ahead markets; generally, clearing is 

performed for 24 hours ahead, it is assumed that the 

daily energy expenditure of MG is fixed based on the 

Eq. (21). 

 

 2.2.1.2 CHP units constraints: 

As shown in Fig. (5), the electrical power generations 

of CHP units are not independent from their thermal 

power and these two powers cannot be controlled 

separately [26]. In Fig. (5), the electrical-thermal 

characteristics of CHP units are presented. The 

operation constraints of CHP units can be extracted 

from Fig. (5). The area under  curve is formulated 

by Eq. (22). Eq. (23) and (24) represent models for 

areas above the curve  and   respectively. Both 

electrical and thermal powers are equal to zero in the 

case of non-participating CHP units in energy 

generation according Eq. (25) and (26) respectively. 
 

H(MWth)
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 Fig. (5): The electrical-thermal characteristic of CHP 

units 

2.2.1.3 Heat energy storage device constraints 

 The heat buffer tank is generally added to CHP units 

and boiler, then acts like a thermal storage. The total 

amount of generated thermal energy is obtained from 

Eq. (27). The delivered thermal energy to the buffer 

tank influenced by losses (
loss ) and generated excess 

heat (
gain ) respectively in the shutdown and startup 

modes of CHP units and boiler at hour t can be 

resulted from Eq. (28) [21]. Therefore, the thermal 

power available for buffer tank at hour t is computed 

from Eq. (29). The Eq. (30) represents heat storage 

capacity of buffer tank and Eq. (31), and (32) indicate 

gradient rate of increasing and decreasing thermal 

energy. The heat capacity limits of boiler can be 

expressed as Eq. (33). 

2.2.1.4. Fuel cell constraints: 

The power capacity limits of boiler: (Eq. (34)). 

Minimum up time constraint: (Eq. (35)).  

Minimum down time constraint: (Eq. (36)). 

Generation rate constraints: (Eq. (37)-(38)) [14]. 
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2.2.1.5 WFs constraints: 

 Characteristics of power generation for wind farms are 

non-linear according to the wind speed which varies 

under the influence of type, dimension, and design of 

turbine. Generally speaking, the generation power of 

wind unit can be obtained by Eq. (A.39). 

Moreover, A, and Bare determined by Eq. (A.40),(A.41) 

[25]. 

 

2.2.1.6. PV constraints: 

Limits on the ESD of the PV unit while getting charged 

and discharged: (Eq. (A.42), Eq. (A.43)). 

Charge/discharge switching constraint: (Eq. (A.44)). 

Initial / terminal energy of the battery: (Eq. (A.45)). 

Amount of saved energy in the battery: (Eq. (A.46)). 

The power generation of the PV unit: (Eq. (A.47)). 

 

2.2.1.7. Electrical energy storage device constraints 

The constraints of electrical energy storage devices are 

similar to the Eq. (A.42)-(A.47) which are related to PV 

constraints. The difference between them is that the 

charging and discharging of these devices and other 

constraints are dependent on scenarios pertaining to the 

WS, PVPG, power/thermal load demand, while the PV 

constraints are just affected by PVPG. 

 

2.2.1.8. Tidal turbine 

 In order to extract the tidal energy and generate power 

electricity, two ways can be used: 

1. tidal stream system that uses kinetic energy of the 

free flowing water and  

2. Tidal barrage system that makes use of potential 

energy of the ocean in height. Usually, this method is 

not used due to the environmental conditions [27]. 

The generation power of tidal stream turbine can be 

obtained by Eq. (A.48). 
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3. Numerical Example 
In this part, firstly, the structure of MG and numerical 

data concerned with energy resources are studied and 

then simulation results of optimal operation for the 

stochastic problem are analyzed. 

 

3.1 Configuration of MG 

In this paper three case studies will be examined: 

1. Planning of isolating MG with predicting 

uncertainties by hybrid method of WT-ANN-ICA, 

2. Planning and determining the optimal strategy of 

MG energy resources connected to grid and 

comparing hybrid prediction methods of WT-ANN 

and WT-ANN-ICA, in order to examine the influence 

of predicting uncertainties upon the profit amount of 

MG, and 

3. Programming and determining the optimal strategy 

of MG connected to the grid and applying hybrid 

prediction method of WT- ANN-ICA for predicting 

uncertainties and exploring the effect of DR problem 

on the profit of MG. 

In cases 2 and 3, the MG is able to exchange energy 

with network based on electrical load demand and 

market price. Stochastic programming is applied on a 

typical MG depicted in Fig. (6). The case studies will 

be performed on three WFs, two CHP units, a TST, a 

PV, a boiler, a low temperature fuel cell (PAFC), an 

electrical energy storage device, a heat buffer tank 

along with the fixed and responsive electrical and also 

fixed thermal loads. The startup and shutdown costs of 

units are presented in table (1). The heat buffer tank 

data and cost coefficients of CHP units are shown in 

table (2). Both 
maxDR  and 

max  are assumed 30%. 

The electrical-thermal characteristics of CHP units are 

displayed in Fig. (5). The parameters of WFs 

include: sm

co iWS /25)(  , sm

n iWS /11)(  , sm

ci iWS /5.2)(  , 

and the rated output power are equal to MW

WNP 5.11  , 

MW

WNP 4.23,2  . Historical data pertaining to the WS, 

electrical demand and market price, electrical energy 

storage devices data and photovoltaic power generation 

are respectively proposed in [23], [24], [21] and [16]. 

The PV nominal power generation is 

0,68.4 minmax  MWMW PP and 75.0 . Table (3) lists the 

parameters used for the tidal steam turbine [27]. 

 
Table (1): The startup and shutdown cost of units 

 

  

MARKET
MG

Power/Thermal

Loads

 
Fig. (6): Typical MG under study 

 

4. Simulation results 
1. Case study 1: planning of MG in the grid- isolated 

mode: In this case, 0 salebuy PP  and the objective 

function is just concluded in cost terms of energy 

resources. The uncertainties are predicted by hybrid    

method of WT-ANN-ICA. The simulation results 

obtained from the first case study are listed in table (4).                  

According to table (4), the generation cost is equal to 

the amount of objective function and $2032.76. In           

this state, the WF, TST and PV are not working with 

their maximum capacity, while the cost of generating   

them is zero and this occurs due to the thermal load of 

MG. The CHP units produce heat to provide thermal 

load. The electrical-thermal characteristics of CHP units 

are the generation factor for both heat and                      

electrical power.                     

2. Case study 2: in the second case, the effect of 

exchanging electrical energy with grid in connected 

mode and also the effect of more accurate prediction of 

random parameters on MG planning are studied by 

comparing hybrid methods of WT-ANN-ICA and WT-

ANN. The MG planning in the presence of all economic 

and technical constraints and also the problem of DR 

will be solved. The results regarding to the second case 

study are presented in table (4). According to table (4), 

using WT-ANN-ICA prediction method, the generation 

cost increased by 13.77% in the case study 2 as 

compared to the first case. The profit of MG resulted 

from taking part in the market is $792.64 and 

$909.93for WT-ANN and WT-ANN-ICA respectively. 

This profit is due to the sale of power to the main grid.  

 

Unit UCOST DCOST 

CHP units 20 20 

Fuel Cell 0.0207 0.0207 

Boiler 9 9 
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Table (2): The heat buffer tank data and cost coefficients of CHP units 

 

 

 

 

 

 
 

 

Table (3): The tidal steam turbine data 

Rated Speed 2.4(m/s) 

Cut-in Speed 0.7(m/s) 

Cut-out Speed 4.2(m/s) 

Power Coefficient 0.47 

Cross-sectional Area )23.006(m 

 

Table (4): Case studies results

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7): The generated power of resources in the planning horizon 

 
The generated power of resources in the planning 

horizon is shown in Fig. (7). The expected amount of 

buying and selling powers, WFs, TST and PV power 

generation are illustrated in Fig. (7). According Fig. (7), 

WFs, TST and PV power generations are readjusted at 

their maximum capacity.       

Therefore, the excess WFs, TST and PV power 

generations can be saved in devices of electrical energy                   

storage and shifted to the hours with more demand 

(higher price) or can be on offer to the market. In Fig. 

(8-c) and (8-d), the generated thermal power of CHP 

units and boiler are shown respectively. According to 

Fig. (8-c) and (8-d), considering costly expenses of 

generation, the boiler is less involved in supplying 

thermal demand, as compared to CHP units.  

Due to the stochastic nature of WFs, TST and PV 

power generations, market price and power/thermal 

load demand, more accurate prediction of these random 

CHP 

units 
=0.0435CHPA =36CHPB =12.5CHPC .027=0CHPD =0.6CHPE =0.011CHPF 

Heat 

Buffer 

Tank 

6.0loss 3.0gain %1 2max

arg

max





ech

discharde

AH

AH 
7max AH 0min AH 

State 
Prediction 

method 

Cost of buying 

energy($) 

Revenue from 

the sale of 

energy($) 

Generation 

cost($) 
Value of OF($) 

Expected 

Profit($) 

Case 1 WT-ANN-ICA - - 2,032.76 -2,032.76 - 

Case 2 
WT-ANN 281.6 1,295.78 2,254.30 -1240.12 792.64 

WT-ANN-ICA 266.93 1,456.96 2,312.86 -1122.83 909.93 

Case 3 WT-ANN-ICA 387.57 1228.45 2,161.59 -1320.71 712.05 
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parameters led to generating scenarios proximate to 

reality and with greater possibility. Consequently, a 

more detailed planning can be achievable. In table (4), 

the obtained results of MG planning are compared by 

prediction hybrid method of WT-ANN and WT-ANN-

ICA. The results indicate 14.79% increased profits of 

MG in WT-ANN-ICA method in comparison with WT-

ANN Method.          

3. Case study 3: to explore the effect of DR program 

on determination of generation strategy of MG.  In the 

third case, the MG planning is studied without DR 

program in order to investigate its effects on the 

expected profit of MG by hybrid prediction method of 

WT-ANN-ICA. Table (4) shows the results of case 

study 3 versus 2. The expected profit decreased while 

the cost of generation dropped slightly. According to 

table (4) the expected profit of MG in the third case 

study is $712.05 which approximately decreased 27.7% 

as compared to the second case study (applied DR 

program). This reduction in profit of MG indicates the 

efficacy of DR program on the optimal planning of 

these units.  

   

Regarding table (4), the objective function values of 

both cases 2 and 3 are negative. That is because of high 

energy demand inside the MG and lack of possibility to 

offer excess power to the main grid. 

The difference between energy generation of 

resources with and without DR is illustrated in Fig (8). 

The received and delivered power to grid with and 

without DR are depicted in Fig (8-a). Regarding this 

figure, the movable loads can be shifted from peak time 

to other hours when the energy price is lower and make 

profit. 
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(c)                                                                                                
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 (e) 

Fig (8): Energy generation of resources with and 

without DR 

 

 

5. Conclusion 

In this paper, an algorithm was suggested to 

ascertain optimal strategy of a MG including WFs, PV, 

TST, fuel cell, CHP units, boiler and ESDs, by 

considering economic and technical constraints and DR 

program. This research aimed to present an 

optimization program to maximize the profit of MG in 

grid – connected mode, and to minimize the cost of 

energy resources in grid- isolated mode. The 

uncertainties are WS, TSS, PVPG market price and 

power/ thermal load demand which are predicted by 

hybrid prediction methods of WT-ANN and WT- ANN-

ICA, and related scenarios are generated by probability 

density functions appropriate to each uncertainty and 

scenario reduction method. The simulation results 

represent that applying more accurate prediction 

method, some scenarios proximate to reality and with 

greater possibility are generated. Hence, a more detailed 

and precise planning is achieved and the expected profit 

of MG might be increased. If the method of WT-ANN-

ICA is used rather than WT-ANN, the expected profit of 

MG will be increased by 14.79%. Furthermore, the 

expected profit can be risen by applying DR program. 

0 5 10 15 20 25
0

1

2

3

4

5

Hour (h)C
H

P
 u

ni
ts

 th
er

m
al

 g
en

er
at

io
n 

(M
W

th
)

 

 
Without DR

With DR

0 5 10 15 20 25
0

2

4

6

Hour(h)C
H

P
 u

ni
ts

 p
ow

er
 g

en
er

at
io

n
(M

W
)

 

 
without DR

with DR

0 5 10 15 20 25
0

0.5

1

1.5

2

Hour (h)B
o
il
er

 t
h

er
m

al
 g

en
er

at
io

n
 (

M
W

 t
h

)

 

 
Witout DR

With DR

0 5 10 15 20 25
0

10

20

30

Hour(h)

F
C

 G
en

er
at

io
n 

(K
W

)

 

 
Without DR

With DR

0 5 10 15 20 25
-10

0

10

Hour(h)

E
x

ch
an

g
ed

 p
o

w
er

(M
W

)

 

 
	with DR

without DR

WSEAS TRANSACTIONS on POWER SYSTEMS Ehsan Jafari, Soodabeh Soleymani, Babak Mozafari

E-ISSN: 2224-350X 396 Volume 13, 2018



 

 

 

According to the studied cases, although the DR 

program increases the generation cost by 7%, the 

expected profit rises more than 27.7% and it goes to 

$909.93, while without considering DR program, this 

profit would be $712.05. 
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